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Abstract

We present a collection of stability results for finite difference approximations to theadvection-

diffusion equati ,u =-u + b u . The results are for centered difference schemes in space

and include explicit and implicit schemes in time up to fourth order and schemes that use

different space and time discretizations for the advective and diffusive terms. The results are

derived from a uniform framework based on the SchuCohn theory of Simple von Neumann

Polynomials and are necessary and sufficient for the stability of the Cauchy problem. Some of

the results are believed to be new.
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1. Introduction

The linear advection-diffusion equation:

at-an + bu, bO, (1)

is often used as a model equation in computational physics, partly because it models two of the

most basic processes in a physical system, namely advection and diffusion. In this paper, we are

interested in the stability analysis of approximation schemes for solving this model equation. An

understanding of the stability properties of a computational scheme is important for both

theoretical questions of convergence and for practical questions of sensitivity to round-off errors.

Since stability results for many common schemes for approximating the wave equation u, -

au, and the heat equation u, - bu n are well-known [11], an often used practical strategy is to

take the more restrictive of the two stability constraints for the wave and heat equations as the

stability condition for the full advection-diffusion equation (1). However, the stability results for

schemes approximating the equation u - an + bu cannot always be inferred from those for

the wave and heat equations. Moreover, there is a danger of arriving at a condition that is more

restrictive than necessary. For example, it is well known that Euler's method for the wave

equation is unconditionally unstaaUe, but the scheme applied to the advection-diffusion equation

(Scheme E2E2 in Section 4) is actually conditionalIp etaUe. Worse yet, one can easily arrive at a

condition that is not sufficient. For example, the stability condition of the scheme that consists

of the Leap-Frog method applied to the it. term and Euler's method applied to the u term

(Scheme LF2E2 in Section 4) is actually more restrictive than those of the corresponding methods

applied to the wave and heat equations separately.

The definition of stability that we employ here is a generalization of the classical von Neumann

stability condition and is designed to guarantee that the computed solution inherits one

important property of the exact solution: that its norm remains bounded. We used a unified

approach for deriving the stability results which is based on the Schur-Cohn theory of locating

zeros of polynomials in terms of their coefficients. We apply this technique to analyse a

collection of commonly used finite difference schemes that includes higher order approximations

in both space and time.

Stability analysis for difference approximations to time dependent partial differential equations

4 is often tricky, tedious and difficult. In this regard, it may be of interest to point out here that

we have found an erroneous stability result for the Euler scheme E2E2 given originally by Fromm

1,°



- . - S , . . J - . h . . . . •.. - .. . o. . o . o . . . . . o . .

2

((31, p.365) and later quoted by Roache ( [131, p.44) and another erroneous result given in Roache

([13], p.61) for the LF2E2 scheme. The Schur-Cohn technique that we employ here, however, is

extremely powerful and general (especially for analysing schemes that span more than two time

levels) and can be used in a systematic way to derive stability results for schemes (not necessarily

*finite difference schemes) that are not analysed here.

Some of the results that we shall present here are well-known and can be found in books such

as Richtmyer and Morton [111, Roache [13], Vichnevetsky and Bowles 117]. However, we believe

that some of the results are new. In any case, we hope that the collection of stability results in

this paper will prove to be a useful reference.

In Section 2, we review centered difference approximations for the advective and diffusive

terms. The general framework of stability analysis and the Schur-Cohn theory will be presented

in Section 3. Analysis and results for a collection of commonly used schemes will be given in

Section 4.

2. Centered Difference Approximations

In this section, we collect for reference purpose, some well-known results concerning centered

finite difference operators for approximating the terms u. and u. Define the translation

operator:

T(h)u(x) u(x+h), h > 0. (2)

We can now define the following difference operators in terms of T(h):

D+(h) - (T(h) - T(o)) I h, (3)

D.(h) - (T(0) - T(-h)) / h, (4)
0-

D0(h) - (T(h) - T(-h)) / 2h - (D++D.) / 2. (5)

(Notation: When the argument of a difference operator is left out, it is understood to be h.)

, Approximations for u. and u~x using centered differences are well-known and are contained in

the following theorems:

Theorem 1: Formally, the first derivative DX m a/ofx has the following expansion:
D. - Do E (-1) j oj (hSD+D./4) j, ()

where _0

u. - [(j) 2 22J i / (2j+1)!. (7)

.IIJ



3

Proof: See Kreisa and Oliger [71, Fornberg (21 and Vichnevetsky and Bowles [17].

Theorem 2: Formally, the second derivative D.- a2 /5ji 2 has the following

expansion:

whe re .=ED(-y #j (h 2 DD4, (8)

)A [(j!9 2
2i J (2j+1)t(j+1) J.(9)

Proof: See Swartz (161.

We shall denote the 2m-th order difference approximation for Dxand Dxxby Amand B~

respectively.

Definition 3: For mn> 1, define:

.,,U.

A D D E (1) oj (h2 D D4,

B. .E(I # hDD

For the stability analysis, we shall need the Fourier transforms of these operators. We shall

, define the Fourier transform of an operator A by

- (A e) / o e' (10)
where

q -2xw.

By noting that

Doe Os - (jl)2 2 -]/ (2h~)!() e 1" (9)nOh eq

ad( 2D +D /4)eqx - ((ei2+e-")/4) e'qx -(sin2(0/2)) eiqi, (12)
w"ere

9 - 2xwh, (13)

we can easi derive the following:

A - iq (sin* / 0) E a (14)

B- er - q2 [sin 2(0/2)/(0/2) E p, (sin2(/2). (15)

We note that A. is always purely imaginary and B. is always real.

The coefficients a. and #%, in (7) and () are tabulated for orders up to six (i.e. (0,1, 2) in

Table 2-1. For computational purposes, it is often more convenient to transform equations (8)

and (8) into stencil forms as:
L

A m E xjT(h) I/h, (18)

42
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Table 2-1: Values of pi

I I p i

4---------------------

0~ 1 1 1 I

I1 1 2/3 I1/8

I2 1 8/15 1 8/45I
---------------- +------------

L
B 2M EX.T(jh)11h 2. (17)

The values of xiand L are tabulated in Tables 2-2 for orders up to six.

Table 242: Stencils of AmandB2

Vs lues of Xjfor D. (x..= xi)

*-. 4----------4------------------- -4--------------------4------ --------------

Im L I O XIX2X
-4---------------------------------------4-------- ------------ 4

1 1111 0 I 1/2 II
-4- 4----------.--------------------4--------------------4------ --------------

1 2 12 0 I 8/12 1 - 1/121
+-. 4--------------4---- ---------------- 4--------------------4--------------------

1 3131 0 1 45/60 1 - 9/60 I 1/60 1
4. 4-.--------------4--------------------4--------------------4--------------------

Ve Iuss of jf or D., (x-, xi)

*-. 4-------------4-------------------- 4.--------------------4------- ------------- 4

L.11 I O II X2X
* - . 4----------4-----------------.--------------4----------.

111 1 2 I 1 III
*-. 4--------------4--------------------4--------------------4--------------------

12 121 - 30/12 1 16/12 1 -1/12 1 1
-4----------------- 4.------------- ------- 4-------------------- 4----------------

3 1 3 90/180 1 270/180 1 -27/180 1 2/180 1
-4-----------------4--------------------4--------------------4------- ------ 4



3. Stability Analysis -General Discussions

3.1. Definition of Stability

We shall consider the following Cauchy problem for (1):

ut - au1 + bum, 0O<x :51,

.( 't o,( ').(8

u(x,) - fAx) E w in
u,

The exact solution is given by:

u(x,t) .- RW)e(w)Ieiq, (19)
where . 4

s(w) - iaq- bie .  (20)

Thus, the wave with frequency w travels with speed a and decays at an exponential rate given by
-bq

2

e

We discretize the spatial interval by a uniform grid with mesh size h - I/(2n+l) and use k to

denote the time step. The most general difference approximation to the system (18) is of the

form:

0_- v(x,t+k) - E 4. v(x,t-jk), (21)
J=-0

-where the 4i am 4j(a,b,h,k), j = -l,O,1,..,p are spatial difference operators:

4j I,(a,b,h,k) T'(h). (22)

The difference scheme defined above has a stencil that spans p+2 time levels, and on the time

level t-jk (j - -l,O,l,...p), it spans the mesh points from x-mjh to x+Mjh. See Figure 3-1.

We shall assume that (45.11 always exists and is bounded, so that (21) can be solved for

v(x,t+k). This usually amounts to requiring the band matrix defined by the linear operator 0.1

to be nonsingular. Any reasonable difference approximation has this property. Also, in practice,

initial values have to be supplied for the time levels t - O,k,...pk. These values can be supplied

by using one-step (two-level) schemes for starting, for example, but for our analysis we shall

assume that these values are obtained from the exact solution u(x,t).

We look for approximate solutions to (21) of the form

v(x,mk) n ?w) Rm(*) e"q . (23)
Mgmu-a
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Flure 3-1: Stencil of a General Difference Scheme

* 0 t'" x-m ih I xHl

-- z-, -. ------ X--X --- X-.- ------ +k

.................. ......................

....... ......... .1. ...............
................ ...

- -- - . ---- --- -..... -- t-pk

.. "X-10h xM h
--- > x direction

Note that if m - 0 in (23), we shall end up with the correct initial function v(x,O) - e

It can be shown ( [8], Ch. 9) that v(x,mk) as given by (23) will satisfy the difference equation (21)

if R(D) satisfies the characterisec equation:

w IRP+I " RPj 0, (24)
where j=o

is the Fourier transform of 0,. R(O) is usually called the amplification factor of the difference

scheme.

The characteristic equation (24) is a polynomial equation of degree p+1 in R and so has p+l

roots. Only one of these, usually called the principal root, corresponds to the approximate

solution v(x,mk) that we want. The other p roots are usually called spurious roots. In practice,

any error introduced in the computation will be propagated by all the spurious roots. Therefore,

unless there are some restrictions on the spurious roots, these propagated errors may become

unbounded and overwhelm the approximate solution that we seek. Since the exact solution u(xt)

to the system has a norm (or energy) that is decreasing with time (or at least not growing with

-' time), it seems reasonable to ask the same from the approximate solution v(x,t). This is what

Richtmyer and Morton [11] referred to as the practical stability criteria. It. usually turns out that

this condition will be satisfied if we restrict the time step k appropriately.

The left hand side of (24) is usually called the characteristic polynomial. Its coefficients are

functions of a, b, h, k and 0. In general, we can express the characteristic polynomial of a p+2

-. . . . . . . ..',': - . . . . . .. . . . . . '. . .. . . . . . . . .. . . . . . .
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time level scheme as:

H(R) +- a , +a 1 R + ... + ap+RP+l. (26)

We shall call the p+l roots of H(R) RI,R2 ...., with R1 being the principal root. It is clear

from (23) that a necessary condition for the computed solution v not to be growing is:

IRj 1 1 V j. (27)

This is usually called the von Neumann Stability Condition and polynomials with property (2)

are called von Neumann Polynomials.

The von Neumann Condition is also sufficient for non-growing solutions for all two time level

(p - 0) difference schemes with only one dependent variable 1111. However, it is not sufficient in

general. The insufficiency mainly arises from the fact that when p > 0, condition (27) does not

exclude the case of multiple roots on the unit circle. Therefore we have to modify the von

Neumann condition a little bit.

Definition 4: We shall call polynomials H(R) with the following property:

IR-i < I Vj,

S- Schur Polynomials.

We shall call polynomials H(R) with the following property:

IRj < 1 Vj,
and (28)

R. distinct on IRI - 1.

Simple von Neumann Polynomials.

Definition 5: We shall call a scheme stable if its characteristic polynomial is a Simple

von Neumann Polynomial V 0 E [0, 2r].

Note that this definition of stability is necessary and sufficient for the computed solution to

* -not have a growing norm. Since the roots Ri are functions of a, b, h, k and 8, the stability

condition will impose a restriction on the range of values that the first four parameters can take.

The notion of stability defined here is analogous to the notion of zero-stability in the theory of

difference methods for the initial value problem in ordinary differential equation ( [91, p.33 and

[61, p.412 ). Condition (28) is the so-called root-condition in that theory.

Notice that our definition of stability (that of non-growing solutions) is slightly different from

*, the definition of stability used in Richtmyer and Morton [111 and in particular the discussion

about the effects of lower order terms on the stability for the heat equation on p.195 of their

o
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book does not apply in our case. Their definition of stability allows growth in the solution and,

for diffusion problems like ut = b u., stability is practically unaffected by lower order terms like

au.

3.2. The Schur-Cohn Theory

There is a whole theory, originating from Schur [14, 151 that deals with tf lass of Simple von

Neumann Polynomials. This theory, an excellent exposition of which can I iund in a paper by

J. J. H. Miller 1101, enables one to determine conditions on the coefficient; the characteristic

polynomial for it to be Simple von Neumann. We shall present the main of that theory

here and shall refer the reader to the original papers for more details.

Given a polynomial
O(z.) - a0 + az + ..+ ,,.' m- azJ,

j-=
of degree v (a, 34 0) and having no zero at the origin (a0 74 0), (any given polynomial can be

reduced to this case without losing information about the location of its zeros), one can associate

with h another polynomial 0, satisfying the same conditions, and defined by
00(z)- E

where a denotes the complex conjugate of a. The reduced polynomial 1 is defined by

)- (,*(0) O) - 0,(0) 0(4) ) / z. (29)

The main results that we need are contained in the following two theorems:

Theorem 8: 0 is a Schur Polynomial iff JO*(0) > I,(o)l and 01 is a Schur Polynomial.

Theorem 7: 0 is a Simple von Neumann Polynomial iff either I*(0)l > IO(0) and 01

is a Simple von Neumann Polynomial or 0, m 0 and 0' is a Schur Polynomial (0'

denotes the derivative of 0 with respect to its dependent variable).

By repeated applications of the above two theorems, it is possible to reduce the question of

whether a n-th degree polynomial is a Simple von Neumann Polynomial to that for a first degree

polynomial, which can be solved solved more easily by analytical means. These results turn out

to be very useful for determining stability limits of difference schemes, as compared to first

finding the roots of the characteristic polynomial explicitly and then determining their absolute

values. Furthermore, this last approach may not even be applicable for polynomials of higher

degrees.

I



4. Stability Analysis - Specific Schemes

4.1. Some Commonly Used Schemes

In this section, we shall present the stability analysis and results for some commonly used

difference schemes for solving the advection-diffusion equation. We shall adopt the following

convention for naming the schemes.

Definition 8: The name for a scheme shall consist of four fields:

Scheme Name: A B C D

where AB is used to denote how the scheme treats the advective term aux, and CD is

used to denote how the scheme treats the diffusive term bu.. A and C are used to

denote the time discretization method used for the anx term and the buxx term

respectively. B and D are used to denote the order of the centered differencing used for

the au1 and bu11 terms respectively.

The following abbreviations will be used for the time discretizations:

E - Forward Euler (first order, two levels, explicit)
BE - Backward Euler (rst order, two levels, implicit)
CN - Crank-Nicolson (second order, two levels, implicit)
LF - Leap-Frog (second order, three levels, explicit)
DF - DuFort-Frankel (second order, three levels, explicit)
BD - Backward Differencing (second order, three levels, implicit)
P4 - Pade (fourth order, two levels, implicit)

For example, the following scheme:

(.(vm+l - vm)/k - aD0vm + bD+D.v m

will be denoted by E2E2 because Euler's method is used to discretize in time and the spatial

approximations are second order.

We shall analyse the following classes of schemes: EnEj, BEnBEj, CNnCNj, P4nP4j, BDnBDj,

LFnCNj, LFnEj and LFaDFj, where n and j are even nonzero integers. This set of schemes is by

no means exhaustive but is intended to include most of the commonly used schemes. It includes

schemes that are first order, second order and fourth order in time; schemes that use the same

order of spatial approximation for both the anu and buX, terms and those that use different

orders for the two terms; schemes that use the same temporal scheme for both terms and those

use different temporal schemes for them; explicit schemes and implicit schemes; and finally two-
level and three-level schemes.

I
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We collect in Table 4-1 the exact definitions of these schemes and their stability conditions.

For reference purpose, we have also indicated the order of the truncation errors for each scheme.
For more details on the error analysis and the stencils for these schemes, the reader is referred to

L-
~['I.

4.2. Stability Analysis

Next, we shall present the stability analysis for the numericai schemes presented in Table 4-1.

We shall apply the basic Schur-Cohn theory presented in Section 3.2 to the characteristic

polynomial of each of the schemes. Only the three-level schemes make non-trivial use of this

theory and we shall present only their analysis in details.

We shall use the following definitions in this section:

Definition 9: Define:

= 4kb/h 2 ,

a ak/h

- b b

6 = ak (X/i)
We note that all the above quantities are real and and -1 are non-negative. The indices n and j

should be clear from the context.

We shall also need the following definitions:

Definition 10: Define:
M - min(n, j),

-n E

i/.

where the p ,'s and the am's are defined in Section 2. Specifically, r.2  1, r.4  5/3 and x 6

11/5; p2 = 1, 4 - 4/3 and p. = 68/45.

1) EnEj

The amplification factor is given by

R =1+ i6--,

We have to find conditions on h and k so that IRI < 1 for 0 E [-r, 4]. This leads to the



Table 4-1L: Summary of Stability Results for Schemes for u, au. + bu.

Notation: h: space step. k: time step.
n, j :positive even integers, K =min[n *j]

A n-th order centered difference operator for u.
B. j-th order centered difference operator for u
Order(p, q) : Truncation error = OOP~) 4 0)

4.-------4------------------------------------------------- -4------------------------------------------

I Scheme I Definition I Stability Condition I
I I (order in x. order in t)I

*----+-------------------------------------------------------------------------------------------

I E2E2 I (v*+1 - v')/k = (mA 2 + bB2) v It < min[2b/a 2. h2/2bJ
I I I order( 2. 2)I

I BEnBEj 1 (v*1 - vm)/k = (aAn + b8)v8+1  IUnconditionally Stable
I I Iorder(N1. 1)I

+--------.------------------------------------------------- ------------------------------------------

I CNnCNj 1 (v'' vo)/k = I Unconditionally Stable I
II(sA 3  b6)(VM* + v2)/2 1 order( N. 2)I

-------- 4--------------------------------------------- -4----------------------------------------4

P4nP4j I (I -G/2 *GIl) t  I Unconditionally Stable
I +IeG/2 +G2 /12)v I

I I where C k(aA@ +. bB~ order( 111 4)I
*----.-------------------------------------+---- --------------------------------------

I BDnBDj I (3/2)Cv'-vm)/k - (1/2)(v-v 1-)/k I Unconditionally Stable I
II=(9A~ bO i)v 1  I order( M. 2)I

+--------4---------------------------------------------------------------------------------------

I LFnCNj 1 (v8* vm- 1)/(2k) @A aAv I Same as that for LFn: I
+ bB(v +. vm-)/2 1 n =2 :k < h/IaI

III n =4 :k < 0.7287 M/al I
III n 6 :k <0.6305 h/IaI I
I I I order( N. 2)I

---- 4-------------------------------------------------4------------------------------------------

ILF2E2 I (vM+ - vs-)/-(2k) = aA2v@ + b82ve I (ak/h) 2 * (4bk/h 2) < 1 1
I I order( 2. 2)I

+---------------------------------------------------------4-----------------------------------------

I LFnDFj I (v** 1-v-)/(2k) @A Av' + bB-m I n=2.j=2: k < h/Idl I
II (uijb/h2)(V* 1 

- 2vsn* vM)- n=4,j=2: k < 0.5311 h/j Id
I9 2 = 1 In=2,j4: k < 0.9685 h/19I I

94 I I'=4/3 In=4.j4: It <0.5458hVial I
I I = 68/45 IError =O(h 'k .1ji(k/h) 2)I

4.-------4--------------------------------------4.------------------------------------ ------
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condition:

(1-1)2 + < 1.

It follows that two neceeary conditions are:

y 2 and 161<5,
which reduces to

Sufficieni cou.5tions, however, are more difficult to derive analytically, especially for larger

values of n and j. For the simplest case of n - j - 2, it can be shown that the necessary and

sufficient conditions are:

0<2 and o2 <P/2,
which reduces to (30)

k < min(2b/a 2 , h2/2b).

The analytical solution of this problem is not difficult but a bit tedious and can be found in [1].

For a geometric proof, see [121. Results for the general ease ae not known.

Remarks: The stability of the method E2E2 was studied by Roache 1131 and a two-

dimensional version by Fromm (31. Instead of condition (30), they found lower bounds on the

spatial step size h independent of the tempora step size k, the so-called cell Reynolds Number

limitation, which is more restrictive. Our results show that h can be as smal as we wish. As

long as k is small enough, the scheme is stable. See also Hirt [5].

2) BEnBEj

The amplification factor is:

R - I/I - ib + ).

It follows from the definitions of -A. and in Section 2 that

IR2 -- I / (I + -I? + 2 < 1.

Hence this scheme is unconditionally stable.

* 3) CNnCNj

The amplification factor is:

R - (1 + i6/2 - -y/2 ) I (1 - i6/2 + 1/2 ).

It follows that

IR12 - ((1 ./2)2 + (6/2)2) I ((1+y/2 + (6/2)2) < 1.

Hence this scheme is unconditionally stable.

-, .- _ . . . - : i .. . : : .... . ' .. . ...... .. ... ..... . . ... .. .
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4) P4nP4j

The amplification factor is:
R--( +G/2 + -2/12) 1 -- /2 + G2/12 )

Let G -A + i where A2 and Z are real. Then it follows that

JR12 - ((1-v7/2+A9p + (6/2+19) / ((l+y1/2+X9r + (6/2+19) <5 1.

Hence this scheme is unconditionally stable.

5) BDnBDJ

In the notation developed in Section 3.2, the characteristic polynomial is given by:

O(z) =-(3/2 + -y - i6)z2 - 2z + 1/2,
and

*(,) - 1/2z - 2z + (3/2 + -1 + i 6).

We shall use Theorem 7 to show that O(z) is a simple von Neumann polynomial. It would then

follow that the scheme is stable.

The condition I0*(O) > 14(0)1 is certainly always satisfied. We next compute as a

1(z) - [(3/2 + -)+ 2 141 2( + .- + ii)

01(Z) is simple von Neumann iff

12(1 +,y + i6)12 < [(3/2 + + 62- 1/412

This can easily be shown to be true for any real -y and 6. Thus O(z) is simple von Neumann and

the scheme is unconditionally stable.

8) LFnCNj

The characteristic polynomial is given by:

(z) - ( + t)z2 - 2ift - (1 - ).

We thus get:

0*(Z) -- (- 1)5+ 2i6z + (I + -).

The condition I0&(O)I > I1(0) reduces to 1I + - > 11 - -y, which is always true because is

positive.

-. Next we compute 01(z) as

.47 - 4i76
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01nz) is simple von Neumann iff

161 < . (31)

Note that condition (31) is the same as the stability criterion for the Leap-Frog scheme applied to

ut - an, with n-th order centered differencing in space. The criteria are all of the form Jak/hJ

< C., where the constats 0 c. can be found in Fornberg [2), for example. In particular, for c. -

*1, c4 -0.7287 and c. 0.8305.

7) nJ

The characteristic polynomial is given by:
• .:# (z) z2 - 2i6z - (I - 2-1).

We thus get:

$*(z) -(2-y- lsz2 + 2i6z + 1.

Now the condition 10(0)1 > 10(0)1 reduces to 1 > 11 - 2-1 which will be satisfied if

which reduces to

This is the same as the stability condition for Euler's method applied to the Ut term with a time

step of 2k and is clearly a necessary condition for stability.

We next compute #,(z) as

0l(z) - z(1 - (1 - 271?) - 4i 7 .

0-(z) will be simple von Neumann iff

146-1 "5 1 - (1-2-)p,
which reduces to

161 < I- .

This is a relationship involving P, a and P and we want to derive conditions involving and a

for it to hold for all value. of 0. In the came of n - 2 and j -2, this has been worked out in [11

and the necessary and sufficient condition is:

1012 + 'g 1. (32)
Results for more general value. of n and j e not known.

Remark: Roache [13) considered this scheme for n - j - 2, but he claimed that the stability

analysis of the advection and diffusion terms may be analyzed separately, and thus obtaining the

conditions lal 5 1 and f < 1. (In his book, he had the equivalent of 95 2, which I believe is
0 , ...... . " 2 .. .. . .. • .. . .. . . . . ... . . . . .. . .



, j *:- 15.* --

-18.

either a typo or a mere oversight.) These two separate conditions are much I restrictive than

(32) and we believe that Roache's results were erroneous. Rigal [121 derived the correct stability

limit using a different approach but he did not show that it is both necessary and sufficient.

8) LFDFJ

Generalized Du Fort-Frankel methods have been studied by Gottlieb and Gustafsson [4].

When adapted to our-cae for the equation u, - an, + buzz, the scheme LFnDFj becomes

-vm'l)/2k - (&An + bB)v m  -(b/hXvh+l-2v m + vre'l)

where fl is a positive constant chosen to make the scheme unconditionally stable for the case a

- 0 (the heat equation). The conditions is exactly:

J J33

The truncation error of the scheme is O(hM, k2, qj(k/h9). Thus the larger the value of q9 is, the

larger is the truncation error. Therefore, in what follows, we shal assume that 9j takes on the

value of the lower bounds given in (33).

The characteristic polynomial is:

o (z) , z (l + gifl/2) - s(t + 2i6 - 2y) - (1 - ij0/2)

It follows that:

O(z) - ,2(-i + 99/2) -z( j- 2i6 - 2-y) + (I- j#/2)

The condition 10 (O) > I4o4)l reduces to
11 + qj,#/21 > I11- 9j$/21,

which is always satisfied because q, and # are both positive.

We compute 01() as:

01(z) - 29js - 2(qj$ - 2- + qjPi6).

Hence the stability criterion is given by

II + 2/(,tq) +i 1,

which can be written as:

S1-(1 + Bj(h2/29jl))/jnhI2 . (34)

It can easily be verified that, for a given n and j, the right hand side of (34) is a function of 0

only, and thus its minimum can be found, at least numerically, to yield an upper bound for a2 as

the stability criterion for the scheme LFnDFj. Moreover, it can also be seen from the form of

(34) that the limitation on k is more restrictive than the corresponding limitation for the Leap-

:I



Frog method applied to at, - au,. The upper bounds have been computed aumerically sand their

values are given in Table 4-2.

Table 4-2: Stability Constants for Scheme LFnDfj

StabilIity Condition a2 < * N where c.., is given below:

4.-----------4--------- --------------- --------------

I 2 I 4 I 6I
4-----------------.------------------4--------------------

1 21 1.0 1 0.9685 I 0.9242 I
---------------- 4---------------4--------------

n 1 41 0.5310 1 0.546 1 0.5391 1
----------------- 4--------------------4------- -------------

I6 1 0.3976 I 0.4231 I 0.4281 I
-----------------4-------------- ------ 4------- -------------
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